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Abstract

Recently, Hu [A note on the frequency of nonlinear conservative oscillators, Journal of Sound and Vibration 286 (2005)

653–662] presented a superposition method for the approximate determination of frequencies of conservative oscillators

when the nonlinear restoring force consists of a superposition of several individual characteristics. In this contribution, it is

shown that the conjecture of Hu is not true in general, particularly for underlinear systems. Only for overlinear systems are

there plausible reasons for the validity of the conjecture, but even for this case one has to use caution.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Recently in this journal, Hu [1] presented a superposition method for the approximate determination of
frequencies of nonlinear conservative oscillators of the type:

€xþ f ðxÞ ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0, (1)

with

f ðxÞ ¼
Xn

i¼1

f iðxÞ, (2)

where fi(�x) ¼ �fi(x) is assumed. Additionally, he considered the auxiliary equations:

€xþ f iðxÞ ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0; i ¼ 1; . . . ; n. (3)

Denoting the exact eigenfrequencies of the systems (1,3) by oe and oei, i ¼ 1,y, n, and any approximation
of them by oa and oai, i ¼ 1,y, n, Hu stated the relation:

o2
a ¼

Xn

i¼1

o2
ai. (4)
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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It should be mentioned that the relation (4) had been already introduced by Atkinson [2] more than 40 years
ago. The formal difference that Atkinson considered, polynomial-type restoring forces instead of more general
functions fi(x), is marginal. Both authors showed the existence of the relation (4) not in the general sense, but
only for the approximation method of harmonic balance:

o2
h ¼

Xn

i¼1

o2
hi, (5)

where oh and ohi, i ¼ 1,y,n, denote the approximate eigenfrequencies of the systems (1,3) according to the
method of harmonic balance [3]. Additionally, they illustrated the approximation

o2
e � o2

a or rather o2
e � o2

h (6)

by certain examples which were essentially ‘‘overlinear’’ (see below).
In this contribution, it is shown that Eq. (4) does not hold in general, although Eq. (5) is valid, as has been

proved in Refs. [1,2]. Additionally, approximation (6) may fail, especially in cases of ‘‘underlinear’’ restoring
forces.
2. Qualitative analysis

A qualitative analysis of systems (1,3) can be simplified for special restoring forces which are either
overlinear, linear, or underlinear. According to Ref. [4], a restoring force f(x) with f(0) ¼ 0 and xf(x)40, x6¼0,
is classified as follows:

f ðxÞ

overlinear

linear

underlinear

8><
>: if

f ðxÞ

x

increases monotonically;

remains constant;

decreases monotonically

8><
>: (7)

for increasing |x|. If f(x) is one or two times differentiable, then following conditions hold:

f ðxÞ
overlinear

underlinear

�
if

xf 0ðxÞ � f ðxÞX0 or xf 00ðxÞX0;

xf 0ðxÞ � f ðxÞp0 or xf 00ðxÞp0:

(
(8)

Overlinear or underlinear restoring forces are also called hardening or softening spring forces, cf. Ref. [5].
A classical result for the periods of the oscillations of the system (1) is repeated here for the sake of
completeness: if f(x) is entirely overlinear then the period Te ¼ 2p/oe of the vibration decreases with increasing
amplitude A; if f(x) is linear, then Te does not depend on A; and finally, if f(x) is entirely underlinear, then Te

increases with increasing A.
As a consequence, if all fi(x), i ¼ 1,y, n, are overlinear restoring forces, then the superposition of fi(x) in

Eq. (2) gives a ‘‘more’’ overlinear function and the period Te is smaller than the single periods Tei ¼ 2p/oei. In
other words, the eigenfrequency oe becomes progressively larger by adding the various restoring forces fi(x).
Therefore, a result in the sense of Eq. (4) looks plausible. In the opposite case, for underlinear restoring
functions fi(x), i ¼ 1,y, n, the problem is more complicated. The superposition of underlinear restoring forces
leads to an overall characteristic which is still underlinear but ‘‘less’’ underlinear than each single fi(x).
Therefore, even though oe decreases with increasing amplitude A, it increases with the addition of a single
fi(x). Given these two opposite trends, the total behavior is not predetermined, and a result like Eq. (4) is not
certain.

This qualitative analysis is strengthened by the fact that the relation between the exact eigenfrequency oe

and the eigenfrequency oa, obtained with an approximation method, depends strongly on the type of
approximation method used. In Ref. [6], it has been shown that for all types of restoring forces f(x) with
f(0) ¼ 0, xf(x)40, x6¼0, the method of harmonic balance always leads to

oeðAÞpohðAÞ (9)
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resulting in:

o2
eðAÞp

Xn

i¼1

o2
hiðAÞ (10)

according to Eq. (5). But for other averaging methods (energy-averaging, various force averaging methods), a
relation like Eq. (9) does not exist in general. Depending on the type of restoring force and on the
approximation method, one can find

oeðAÞp
4

oaðAÞ. (11)

3. Counterexample

By a counterexample, it is shown that conjectures (4) and (6) by Hu [1] and Atkinson [2] do not hold in the
general case. The exact calculation of the eigenfrequencies is used as the approximation method here.

Consider the wobble vibrations of a vertically placed block (rectangular parallelepiped) on a horizontal
plane. The equation of motion is given by

€xþ f wðxÞ ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0, (12)

f wðxÞ ¼ f 0 1�
x

x0

� �
; x40; f wð�xÞ ¼ �f wðxÞ, (13)

where x corresponds to the angular displacement of the block, [7]. The characteristic fw(x) is shown in Fig. 1.
This restoring force can be considered as a limit of a differentiable underlinear force function, but its piecewise
linear behavior allows explicit calculation of all values of interest. The vibration amplitude A is bounded by x0,
and the limiting case of A-x0 will be discussed for simplicity.

The period Tw is determined by

TwðAÞ ¼ 4

ffiffiffiffiffi
x0

f 0

r
ln

1� A
x0

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� A

x0

� �2r . (14)

According to the underlinear character of the restoring force fw(x), the period (14) increases with increasing
amplitude. In the limit as A-x0, it is

lim
A!x0

TwðAÞ ¼ 1. (15)

Based on the wobble oscillator, the system (1,2) is considered with

f ðxÞ ¼ f 1ðxÞ þ f 2ðxÞ; f 1ðxÞ ¼ f wðxÞ; f 2ðxÞ ¼ mx. (16)
fw (x)

A 

-A 

f0

-f0

x0

-x0
x

Fig. 1. Restoring force of the wobble oscillator.
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For i ¼ 1,2 the squared eigenfrequencies are determined as

o2
e1 ¼

4p2

T2
e1

; Te1 ¼ TwðAÞ; o2
e2 ¼ m. (17)

To determine oe, the results of the wobble oscillator can be transferred. For 0omof0/x0 the restoring force
f(x) looks similar to that of fw(x), but only the zero crossing f(x1) ¼ 0 is shifted from x0 to

x1 ¼
f 0x0

f 0 �mx0
. (18)

Therefore, the period Te(A) runs as

TeðAÞ ¼ 4

ffiffiffiffiffi
x1

f 0

r
ln

1� A
x1

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� A

x1

� �2r . (19)

Particularly, evaluating Eq. (19) for A-x0:

Teðx0Þ ¼ 4

ffiffiffiffiffi
x0

f 0

r
1ffiffiffiffiffiffiffiffiffiffiffi
1� r
p ln

r

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p ; r ¼

mx0

f 0

(20)

is obtained. With respect to conjecture (4) for A ¼ x0, the squared eigenfrequencies o2
e1 ¼ 0 according to

Eq. (15), o2
e2 ¼ m according to Eq. (17), and

o2
e ¼

p2

4

f 0

x0
ð1� rÞ

1

ln r

1�
ffiffiffiffiffiffiffiffi
1�r2
p

h i2 (21)
Fig. 2. Percentage of approximation error peðrÞ ¼ 100ð1� ðm=o2
e ÞÞ.
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according to Eq. (20), should satisfy the following equation:

o2
e � o2

e1 þ o2
e2 ¼ m. (22)

Fig. 2 shows the percentage of the approximation error peðrÞ ¼ 100ð1� ðm=o2
eÞÞ. Estimate (22) completely

fails for small values of r ¼ mx0/f0; for r ¼ 0 the error is 100%. For increasing r the error becomes smaller but
even for r ¼ 1 (which corresponds to a signum function of the restoring force f(x)), a failure of 19% still
remains. Therefore, the conjectured relation (4) cannot be reasonably applied.

This example can also be used to show the quality of the method of harmonic balance. Applying this
method to the restoring forces in Eq. (16), the approximate squared eigenfrequencies

o2
h1 ¼

4

pA

Z p=2

0

f wðA cos tÞ cos tdt ¼
4f 0

pA
�

f 0

x0
, (23)

o2
h2 ¼ m, (24)

o2
h ¼

4f 0

pA
�

f 0

x1
¼

4f 0

pA
�

f 0

x0
þm (25)

are obtained. Hence, the equality (5) is confirmed. But how good are the approximations? To answer that
question, the wobble oscillator is considered again. The percentage of the approximation error phðlÞ ¼
100ð1� ðo2

h1=o
2
e1ÞÞ is represented in Fig. 3 for 0olo1, l ¼ A/x0. For small amplitudes the result is very

satisfactory, but even for A ¼ 0.75x0 an error of about 20% appears, and for A-x0 the error increases to
infinity. The negative sign of the error corresponds to the inequality in Eq. (9). Although the method of
harmonic balance leads to good approximations in many applications, there is no guarantee that it works well
in all cases.
Fig. 3. Percentage of approximation error phðlÞ ¼ 100ð1� ðo2
h1=o

2
e1ÞÞ.
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4. Conclusions

Conjectures (4) and (6) of Hu [1] and Atkinson [2] are not true in general. Although the result (5) is valid, its
application has to be considered carefully because the method of harmonic balance may fail.

The conjecture (6) and the relation (5) may be applied for overlinear systems. Although there is not a proof
for the validity of Eq. (6), there are plausible reasons that for this case the error remains small. But for
underlinear systems, the conjecture (6) is not trustworthy. The counterexample showed its failure. For mixed-
type characteristics (where the restoring force is not exclusively overlinear, linear, or underlinear), it is also not
recommended to apply the method of Hu [1] and Atkinson [2].
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